On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation
نویسندگان
چکیده
Sulphuric acid and organic vapours have been identified as the key components in the ubiquitous secondary new particle formation in the atmosphere. In order to assess their relative contribution and spatial variability, we analysed altogether 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in 2007–2009. We tested models of several different nucleation mechanisms coupling the formation rate of neutral particles (J ) with the concentration of sulphuric acid ([H2SO4]) or low-volatility organic vapours ([org]) condensing on sub-4 nm particles, or with a combination of both concentrations. Furthermore, we determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism. The main goal of the study was to identify the mechanism of new particle formation and subsequent growth that minimizes the difference between the modelled and measured nucleation rates. At three out of four measurement sites – Hyytiälä (Finland), Melpitz (Germany) and San Pietro Capofiume (Italy) – the nucleation rate was closely connected to squared sulphuric acid concentration, whereas in Hohenpeissenberg (Germany) the low-volatility organic vapours were observed Correspondence to: P. Paasonen ([email protected]) to be dominant. However, the nucleation rate at the sulphuric acid dominant sites could not be described with sulphuric acid concentration and a single value of the nucleation coefficient, as K in J=K [H2SO4], but the median coefficients for different sites varied over an order of magnitude. This inter-site variation was substantially smaller when the heteromolecular homogenous nucleation between H2SO4 and organic vapours was assumed to take place in addition to homogenous nucleation of H2SO4 alone, i.e., J=KSA1[H2SO4]+KSA2[H2SO4][org]. By adding in this equation a term describing homomolecular organic vapour nucleation, Ks3[org], equally good results were achieved. In general, our results suggest that organic vapours do play a role, not only in the condensational growth of the particles, but also in the nucleation process, with a site-specific degree.
منابع مشابه
On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation
Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid a...
متن کاملAtmospheric nanoparticles formed from heterogeneous reactions of organics
Atmospheric aerosols directly and indirectly affect the radiative balance of the Earth’s atmosphere1. Nanoparticles are a key component of atmospheric aerosols, growing rapidly under ambient conditions2–4. Organic species are thought to lead to the growth of nanoparticles smaller than 20 nm (refs 5, 6), but the identity of these species and the underlying chemical mechanisms remain elusive. Her...
متن کاملCluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration
According to atmospheric observations new particle formation seems to be a function of sulphuric acid concentration to the power from one to two. The nucleation theorem then predicts that the critical cluster contains one to two sulphuric acid molecules. However, existing nucleation theories predicts that the power is more (or equal) than 2. Here we present an activation theory, which can expla...
متن کاملParameterization of ion-induced nucleation rates based on ambient observations
Atmospheric ions participate in the formation of new atmospheric aerosol particles, yet their exact role in this process has remained unclear. Here we derive a new simple parameterization for ion-induced nucleation or, more precisely, for the formation rate of charged 2-nm particles. The parameterization is semi-empirical in the sense that it is based on comprehensive results of one-year-long a...
متن کاملKinetic nucleation and ions in boreal forest particle formation events
In order to gain a more comprehensive picture on different mechanisms behind atmospheric particle formation, measurement results from QUEST 2-campaign are analyzed with an aid of an aerosol dynamic model. A special emphasis is laid on air ion and charged aerosol dynamics. Model simulations indicate that kinetic nucleation of ammonia and sulphuric acid together with condensation of sulphuric aci...
متن کامل